合集包含:
- 数据科学入门(第2版)
- Python数据科学与机器学习:从入门到实践
- 统计思维:程序员数学之概率统计(第2版)
- 面向数据科学家的实用统计学
- 干净的数据:数据清洗入门与实践
- 命令行中的数据科学
- Python数据科学手册
- 数据科学实战
数据科学入门(第2版)
本书基于Python语言环境,从零开始讲解数据科学工作,讲述数据科学工作所需的技能与诀窍,并带领读者熟悉数据科学的核心知识:数学与统计学。作者借助大量具有现实意义的实例详细展示了什么是数据科学,介绍了从事数据科学工作需要用到的库,如NumPy、scikit-learn、pandas等,还在每章末尾推荐了很多学习资源,帮助你进一步巩固本书所学。新版基于Python 3.6,重写了所有示例和代码,并根据数据科学近几年的发展,新增了关于深度学习、统计学和自然语言处理等主题,让图书内容与时俱进。
Python数据科学与机器学习:从入门到实践
本书介绍了使用Python进行数据分析和高效的机器学习,首先从一节Python速成课开始,然后回顾统计学和概率论的基础知识,接着深入讨论与数据挖掘和机器学习相关的60多个主题,包括贝叶斯定理、聚类、决策树、回归分析、实验设计等。
统计思维:程序员数学之概率统计(第2版)
现实工作中,人们常常需要用数据说话。可是,数据自己不会说话,需要人对它进行分析和挖掘才能找到有价值的信息。概率统计是数据分析的通用语言,是大数据时代预测未来的根基。如果你有编程背景,就能以概率和统计学为工具,将数据转化为有用的信息和知识,让数据说话。本书介绍了如何借助计算而非数学方法,使用Python语言对数据进行统计分析。
通过书中有趣的案例,你可以学到探索性数据分析的整个过程,从数据收集和生成统计量,到发现模式和检验假设。你还将探索概率分布、概率法则、可视化技术,以及其他许多工具和概念。
面向数据科学家的实用统计学
本书解释了数据科学中至关重要的统计学概念,介绍如何将各种统计方法应用于数据科学。作者以易于理解、浏览和参考的方式,引出统计学中与数据科学相关的关键概念;解释各统计学概念在数据科学中的重要性及有用程度,并给出原因。
干净的数据:数据清洗入门与实践
本书从文件格式、数据类型、字符编码等基本概念讲起,通过真实的示例,探讨如何提取和清洗关系型数据库、网页文件和PDF文档中的数据。最后提供了两个真实的项目,让读者将所有数据清洗技术付诸实践,完成整个数据科学过程。
命令行中的数据科学
本书集实用性和先进性于一身,为数据分析人员使用命令行这个灵活的工具提供了重要参考。作者讲解了众多实用的命令行工具,以及如何使用它们高效地获取、清洗、探索和建模数据。无论你使用Windows、OS X,还是Linux,都可以安装包含80多个命令行工具的“数据科学工具箱”,迅速建立自己的数据分析环境。无论你是否已经习惯于使用Python或R语言,都能够通过本书体会到使用命令行的快捷、灵活与伸缩自如。
Python数据科学手册
本书是对以数据深度需求为中心的科学、研究以及针对计算和统计方法的参考书。本书共五章,每章介绍一到两个Python数据科学中的重点工具包。首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境;第2章讲解能提供ndarray对象的NumPy,它可以用Python高效地存储和操作大型数组;第3章主要涉及提供DataFrame对象的Pandas,它可以用Python高效地存储和操作带标签的/列式数据;第4章的主角是Matplotlib,它为Python提供了许多数据可视化功能;第5章以Scikit-Learn为主,这个程序库为最重要的机器学习算法提供了高效整洁的Python版实现。
数据科学实战
本书旨在让读者能够举一反三地解决重要问题,内容包括:数据科学及工作流程、统计模型与机器学习算法、信息提取与统计变量创建、数据可视化与社交网络、预测模型与因果分析、数据预处理与工程方法。另外,本书还将带领读者展望数据科学未来的发展。
资源使用阿里云盘分享,付款后可查看下载链接: